skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gómez, Mario"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study a family of invariants of compact metric spaces that combines the Curvature Sets defined by Gromov in the 1980 s with Vietoris–Rips Persistent Homology. For given integers$$k\ge 0$$ k 0 and$$n\ge 1$$ n 1 we consider the dimensionkVietoris–Rips persistence diagrams ofallsubsets of a given metric space with cardinality at mostn. We call these invariantspersistence setsand denote them as$${\textbf{D}}_{n,k}^{\textrm{VR}}$$ D n , k VR . We first point out that this family encompasses the usual Vietoris–Rips diagrams. We then establish that (1) for certain range of values of the parametersnandk, computing these invariants is significantly more efficient than computing the usual Vietoris–Rips persistence diagrams, (2) these invariants have very good discriminating power and, in many cases, capture information that is imperceptible through standard Vietoris–Rips persistence diagrams, and (3) they enjoy stability properties analogous to those of the usual Vietoris–Rips persistence diagrams. We precisely characterize some of them in the case of spheres and surfaces with constant curvature using a generalization of Ptolemy’s inequality. We also identify a rich family of metric graphs for which$${\textbf{D}}_{4,1}^{\textrm{VR}}$$ D 4 , 1 VR fully recovers their homotopy type by studying split-metric decompositions. Along the way we prove some useful properties of Vietoris–Rips persistence diagrams using Mayer–Vietoris sequences. These yield a geometric algorithm for computing the Vietoris–Rips persistence diagram of a spaceXwith cardinality$$2k+2$$ 2 k + 2 with quadratic time complexity as opposed to the much higher cost incurred by the usual algebraic algorithms relying on matrix reduction. 
    more » « less
  2. https://arxiv.org/abs/2301.00246 
    more » « less